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DEPENDENCE OF VTPR TRANSMITTANCE PROFILES AND OBSERVED 
RADIANCES ON SPECTRAL LINE SHAPE PARAMETERS

Charles Braun
National Environmental Satellite Service, NOAA, Washington, D.C.

ABSTRACT  The sensitivity of transmittance profiles 
and radiances to spectral line shape and line strength 
was calculated for the spectral intervals of the 
Vertical Temperature Profile Radiometer (VTPR).

Computations were done for U.S. Standard Atmosphere 
Supplements for 15°N and 60°N. For 15°N, the change 
in calculated radiance became equal to the permissible 
design noise level of the instrument in at least one 
spectral channel, when the Lorentz half-width changed 
by 2%, the exponent of its temperature dependence by 
12%, or the line strength by 1%. The same change in 
calculated radiance occurred for the profile of 60°N 
when these parameters were varied by 4, 22, and 2%, 
respectively.

The effects of variations in the concentration of 
atmospheric C02, which occur with changes in geo
graphic location and season, were also studied. If 
these variations are ignored and a constant value is 
used, the error in calculated radiance exceeds the 
design noise level in several spectral channels in 
the profile of 15°N and is close to the design noise 
level for one channel in the profile of 60°N.

The permitted variations in spectral line strength 
and line shape parameters are found to be consider
ably less than the uncertainty of the values deter
mined by laboratory measurement. At present, tem
perature profiles cannot be accurately retrieved 
using transmittances calculated from these parame
ters alone. Empirical adjustments to the radiance 
data and the calculated transmittances are also 
necessary. More accurate laboratory measurements 
should be made of the spectral line parameters to 
eliminate the need for empirical adjustments.
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INTRODUCTION

A number of satellite instruments have been designed to measure radiances 
in various spectral channels for use in determining atmospheric temperature 
profiles (Fritz et al. 1972). To obtain accurate temperature profiles from 
radiometric data, the atmospheric transmittance profile for each spectral 
channel of the radiometer must be known.

Two sets of radiances are used to retrieve a temperature profile from real 
data: the set actually measured in the spectral channels of VTPR, and a 
hypothetical set computed for the VTPR channels. The hypothetical radiances 
are computed, for a nfirst guess” temperature profile, from a set of atmo
spheric transmittances for the VTPR spectral channels also calculated for 
the first guess temperature profile (Fritz et al. 1972). The accuracy of 
the radiances calculated for the first guess temperature profile depends on 
the use of known atmospheric transmittances (as functions of pressure, tem
perature, and wavelength) within these spectral channels. This, in turn, 
requires knowledge of the temperature and pressure dependence of the strength 
and shape of each spectral line within the bandpass of the radiometer.

The calculated first guess radiances are combined with the measured radi
ances to retrieve the temperature profile. Errors in the calculated set of 
radiances appear on the retrieved temperature profile as errors in the meas
ured set of radiances. It is therefore necessary that the error in calcu
lated radiances caused by uncertainty in atmospheric transmittance be less 
than the allowed error for observed radiance in all spectral channels of 
VTPR. The maximum amount by which linewidth, its temperature dependence, 
line strength, and C02 concentration can vary, and yet keep the uncertainty 
in atmospheric transmittance within these bounds, is computed and discussed.

Line-by-line computer programs to calculate atmospheric transmittance have 
been described by Drayson (1966), Kunde and McGuire (1974), and Scott (1974).

In this paper, Draysonfs program is used to calculate transmittance pro
files for the VTPR (McMillin et al. 1973). The VTPR senses radiation in 6 
spectral channels in the 15-ym v2 band of CO^, 1 atmospheric window at 12 ym, 
and 1 channel in the H20 vapor rotation band near 19 ym. Transmittance 
profiles and radiances for CO^ alone were calculated for the 6 CO^ channels 
of VTPR. Three parameters were varied independently in these calculations:
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1) spectral linewidths, 2) the functions specifying their temperature 
dependence, and 3) line strength.

The fourth parameter of this study, the atmospheric C02 concentration, 
although physically independent of the other three, has the same effect on 
calculated transmittance profiles and radiances as the line strength. Its 
variation was studied simultaneously with that of line strength.

The permitted uncertainties for the values of all four parameters were 
found in this study to be much less than the uncertainties in their values 
as determined by theory and laboratory experiments. Values for linewidths 
and their temperature dependence are particularly uncertain because of the 
scarcity of data on these 2 quantities for the 15-ym band of CC>2.
Computations were done for temperature profiles (U.S. Standard Atmosphere 

Supplements 1966) at 15°N (annual) and 60°N (winter); these were chosen to 
represent cases of steep and shallow lapse rates, respectively (fig. 1). As 
expected, the variation of spectral radiance with spectral linewidth and 
total C02 concentration is greater for the temperature profile with the 
steeper lapse rate.

The need for better data, and the improvement such data would make in the 
retrieval of atmospheric temperature soundings from satellite radiance data, 
are discussed under Results and Conclusions.

CALCULATION OF RADIANCES

Equations for Atmospheric Transmittance and Radiance

Atmospheric transmittances and radiances were calculated from Drayson’s 
line-by-line program. Two spectral line shapes are used in this program: 
The Lorentz line shape for atmospheric pressures of P ± 100 mb, and the
Voigt profile for P < 100 mb. The absorption coefficient k for the Lorentz 
line shape used by Drayson is

k(v) =
S(T) aL (T,P)

"[(v - vQ)2 + aL(T,P)2] (

where T = absolute temperature, K 
S(T) = line strength, atm"1 cm 

v = wavenumber, cm-1
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vQ = wavenumber at the center of the spectral line, cm 

a (T, P) = Lorentz half-width, cm-1.
Li

For his line-by-line program Drayson used values of S(T) obtained from 
Madden (1961) and Gray and Selvidge (1965). The values of «L(T,P) used in 
his program were taken from the work of Yamamoto et al. (1969).

The Lorentz linewidth may be expressed in terms of its value at a standard 
temperature TQ and pressure PQ as follows:

aJT.P) = X a,(T0,P0) • (j^) ' (2

The parameters  and  are arbitrary factors used to adjust the values of 
the Lorentz half-widths and the exponent of their temperature dependence 
respectively. When A = 1.0 and y = 0.5 the Lorentz linewidths and their 
temperature dependence reduce to the values used in Drayson's program to 
process real data.

\ y

The absorption coefficient for the Voigt line shape is a convolution of the 
Lorentz and Doppler shapes. It is discussed in many texts, among them Penner 
(1959) and Goody (1964). A convenient way of writing the Voigt absorption 
coefficient (Drayson 1966) is

K(v - vQ)
knT

IT
C°° dt e
_oo y2 + (x-t)2

(3)

£n2 pS(IL
where kQ = 2 aQ(T)

y = aL(T,P) / od(T)

X = (v - vQ) • [£n 2] 2 / aD(T) 

a (T) = Doppler half-width
and t = dimensionless variable to permit integration over all possible 
molecular velocities occurring in the gas.
For a particular spectral line, the line strength S(T) is defined in terms 
of the absorption coefficient as
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S (T) = dv k(v,T)
. 0

(4)

This function is independent of P and is the same whether k(v,T) is for the 
Lorentz shape of eq (2) or the Voigt shape of eq (3).
Transmittance at a specific wavenumber and pressure is defined by

,0

t(v,P) = exp | CCO.

g
dP' k[v,T(P'),P'] } (5)

where = mole fraction of carbon dioxide,
g = acceleration of gravity, and 

k[v,T,P'] = absorption coefficient per unit mass.

The radiance observed in one spectral channel of a satellite radiometer is 
closely approximated by

I(v.) = B(v.,T ) • [t (v,P) ]1 i s^ L sv v
,0

x(Ps)
dx\£ (v’xVv B[v T(x)] (6)

where x = monotonically increasing function of pressure, 
and = central wavenumber of the spectral channel,
B(v^,T) = Planck radiance at the central wavenumber v^, for Temperature T, and 
t(v,P) = transmittance given by eq (5).

The brackets / indicate the wavenumber average over the spectral bandpass 
of the channel. The subscript s indicates the surface value of a quantity.

Radiances Calculated as a Function of Linewidth 
and Its Temperature Dependence

Transmittances and radiances of the six C02 channels of VTPR were computed 
for the two temperature profiles of figure 1. Radiances were computed for 
each temperature profile for four values of y and three values of A [which 
enter the computations through eq (2)].
Radiances computed for y = 0.5 and A = 1.0 are listed in table 1 and are 

the values used in Drayson’s program. When y = 0.5, the temperature
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Figure 1.--U.S. Standard Atmosphere temperature profiles used for this study.
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dependence of the Lorentz half-width is that predicted by the classical 
theory of pressure broadening* which treats colliding molecules as rigid 
spheres.

Table 1.--Radiances calculated for two supplementary standard
atmospheres for the six C02 channels of VTPR

Channel
no.
i

Central
wavenumber
v^(cm_ -1)

15°N 
Profile

(annual) 60°N 
I (Vi) mw/(sr m2 cm” 1)

(winter)

i 668.5 54.60 38.67
2 677.5 42.70 36.20
3 695.7 44.97 38.90
4 707.2 62.53 48.29
5 724.7 85.57 58.34
6 747.5 108.87 67.67

Parameter values are: CCQ^ = 320 ppmv, y = 0.5, and X = 1.0. Nominal band-
widths are Av = 3.5 cm-1 for channel 1 and Av = 10 cm”1 for channels 2 to 6.

The changes in radiances calculated as y is varied from 0.5 to 1.25 (for 
X = 1.0) are graphed in figure 2. The changes that result as X is varied 
from 1.0 to 1.8 (for y = 0.5) are shown in figure 3.
Figures 2 and 3 indicate that calculated radiances increase in some spec

tral channels and decrease in others as y or X is increased. Increasing y or 
X broadens the spectral lines in all channels and increases their equivalent 
widths. This shifts the profile for the derivative of the transmittance 
^dx/dx^* and its peak value ^dx/dx)vax upward in each spectral channel. For 
spectral channels in which {dx/dx)v occurs below the tropopause, increasing 
Y or X decreases the radiance of these channels. For channels in which 
^dx/dx)^ax occurs above the tropopause, changing either parameter has the 
reverse effect.* For channels 1 and 2 of the profile of 15°N and channel 1 
of 60°N, (dx/dx)^x is above the tropopause, and their radiances increase if

*The only case for which this may not be true is for spectral channels in 
which a large amount of surface radiation reaches the satellite and when there 
is a strong temperature inversion near the surface.
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y or X are increased. For all remaining channels, {dr/dx)™ax is below the 
tropopause; their radiances decrease if either quantity is increased.

The maximum permissible error in observed radiance for the spectral channels 
of VTPR has been set by Wark and Fleming (1966) at

AE = 0.25 mW/(sr m2 cm-1).* (7)

As mentioned previously, the errors in calculated radiances (from the first 
guess temperature profile) can be no greater than the errors allowed for 
observed radiances. Table 2 shows the amount by which y and X can be varied 
separately for every spectral line and still limit the change in calculated 
radiance to be less than AE in every spectral channel of VTPR.

Table 2. Maximum variation in λ, γ, and Cco2 or S(T) for which the 
change in calculated radiance is less than AE of eq (7) for all 

spectral channels of VTPR

Variation (absolute value)
Parameter 15°N annual 60°N winter 

profile profile

Y 0.06 0.11
X 0.02 0.04

cco2 4 ppmv 7 ppmv
S(T) 1.3% 2.2%

The limits obtained in this study for y and X are considerably smaller than 
the uncertainties of these quantities derived from current experimental data 
on spectral linewidths.
Values of y have been measured for only a few lines in the C02 spectrum. 

Measurements of the self-broadened linewidths in the v3 band give values of y 
between 0.88 and 2.15 (Tubbs and Williams 1972). In the v2 band, measurements 
of y for C02 mixed with N2 have been made for a few lines in the "Q" branch by 
Aronson et al. (1974). They obtained values of y = 0.52 to 1.05 from measure
ments made over a temperature range of 200 to 300 K. Values of y have not

*The tolerance for channel 1 (the v2 "Q" branch) is twice this value.
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been measured for other lines in the v2 band, but they may differ appreciably 
from the value y = 0.5, assumed in Drayson's program.

Recent measurements of the linewidth a^(TQ, PQ) made in the 15-m "Q" branch 
by Aronson et al. (1974) are consistently 10 to 20% higher than the values of 
Drayson's program (taken from Yamamoto et al. 1969). The only other line- 
width measurements in the v2 band are those made by Madden (1961) for a few 
isolated lines. If one assumes that all linewidths in this band have been 
underestimated by 10 or 20%—a possible implication of Aronson's measure
ments—then A should be at least 10% greater than the value now used in 
Drayson's program. If the current value of A is in error by this amount, the 
errors in the first guess radiances calculated for these temperature profiles 
are well outside their permissible limits.

The spread in experimentally determined values of y and A, the correspond
ing uncertainty in radiances calculated for these parameters for the two 
temperature profiles of figure 1, and the spectral channel of VTPR most sensi
tive to variation of these parameters, are summarized in table 3. The uncer
tainties in calculated radiance are well outside the limits of eq (7).

It is clear that the values of y and A are not known with sufficient accu
racy for the v2 band to guarantee that first guess radiances can be calculated 
to the accuracy required for retrieving temperature profiles from atmospheric 
radiances. The need for additional laboratory measurements of these parame
ters is apparent.

Table 3. Range of possible values for the spectral line parameters for CO2ν2 
band and corresponding range or uncertainty of radiances calculated for VTPR

Range of calculated Value used in radiance for the most current line- Range of experimen sensitive spectral by-line program tally determined channel of VTPR Parameter (Drayson 1966) value (Madden 1961, (mW/sr m2 cm’1)to calculate Aronson et al. 1974)
transmittance 15°N 60°N

profile profile

Y 0.50 0.52 to 1.05 1.8 1.2
A 1.0 1.1 to 1.2 1.3 0.7

S(T)/Sq(T) 1.0 1.05 to 1.10 0.9 0.4

Sq(T) is the value of line strength used in Drayson's program.
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Results for Different CO 2 Concentrations

Transmittances and radiances were calculated for five values of Cqq , the 
mole fraction of atmospheric C02, for the temperature profiles described 
earlier. Concentration was assumed to be independent of height in each case. 
The mole fraction of C02 currently used in Drayson's program is 320 parts per 
million by volume (ppmv). Radiances calculated for this amount of CC>2 are 
listed in table 1. The changes in radiance that occurred as Cqq was varied 
are plotted in figures 4 and 5.

Increasing the value of C^q2 also increases the total absorption, shifting 
the profile for ^dx/dx) ™ax upward in the atmosphere. Hence, the behavior 
of the radiance in each spectral channel is qualitatively the same as when y 
or A is increased. This accounts for the similar behavior of the curves in 
figures 2, 3, 4, and 5.
The transmittance profile ^dx/dx) ^ depends on the line strength S(T) in 

the same way it depends on Cqq^. This is true because the transmittance of
eq (5) contains the product of C^q2 and k(v,P), which is directly proportional 
to S(T). Table 2 shows the maximum percentage by which Cqq2 or S(T) can be 
varied for each spectral line to limit the change in calculated radiance to 
less than AE for every spectral channel of VTPR.
The limits of table 2 are considerably lower for the 15°N profile than for 

the 60°N profile. It can be seen in figures 2 to 5 that the sensitivity of 
calculated radiances to the choice of y, A, or CCq2 is greater in each spec
tral channel in the profile of 15°N than for the profile of 60°N.

The simplest explanation for the greater sensitivity in the 15°N profile is 
that the variation of radiance calculated for a given shift in ^dx/dx^> ^x, 
by a change in either y, A, or Cqo2> is directly proportional to the lapse 
rate in the region of /dx/dx)> ™ax. Since the lapse rates are steeper at 15°N 
than at 60°N, the calculated radiance changes are expected to be greater at 
15°N.
Current literature (Bischof 1963, Bolin and Bischof 1970, and Woodwell et 

al. 1973) indicates the present global concentration of C02 is

CC02 = 325 ± 2 ppmv,

with an average annual rate of increase (Machta and Telegdas 1974) of
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dCC02
dt 0.7 ± 0.1 ppmv/yr.

In addition to the secular increase of Cco , seasonal changes of 5 ppmv occur
2There are also changes with geographic location and altitude (Pales and Keel

ing 1965, Brown and Keeling 1965, and Bolin and Keeling 1963).
The uncertainty of 5 ppmv (1.6%) in CC02 is between the limits allowed for 

this quantity in table 2. A more serious source of error is the uncertainty 
in individual spectral line strengths.
Values for S(T) for the individual spectral lines of the VTPR C02 channels 

are determined indirectly from low-resolution measurements of the integrated 
absorption

• v2 dv {l - exp[-k(v)p£]} (8)
where p = pressure in atmospheres, 

and 1 = path length in centimeters
for C02 in the 14- to 16-ym spectral region. Methods for doing this have 
been described by Kaplan and Eggers (1956) and by Gray and Selvidge (1965). 

The total strength is defined as

SB Z k (v) \>i v. (9)

where kv^ = absorption of coefficient of spectral lines centered at wavenumber 
v^. The sum is taken over all lines of all bands that absorb in the spectral 
region of interest. Values for the total band strength of the 14- to 16-iam 
spectral region, as determined by various workers, are summarized in table 4. 
Only data taken since 1955, which appear to be free of experimental bias, are 
included in this table. The relative error estimated for the total band 
strength appears to be small, and is of the order of uncertainty of the value

for cco2•
The two principal difficulties in calculating individual line strengths 

are partitioning the total band strength between the various vibration- 
rotation bands in this spectral region, and then determining the strengths 
of the individual lines within each band from the strength assigned to that
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Table 4. Experimental values for the strengths of the 
CO2 bands in the 14- to 16-μm spectral region

° Observer
(cm-2 atm_1)STP

240 ± 5 Kaplan and Eggers (1956)
230 ± 20 Harward and Patty (1968)
246 ± 8 Wolk (1967)
251 + 11 Madden (1961)
240 + 36 Ludwig et al. (1966)
241 2 ± 3.1 *

*Mean of above measurements, and standard deviation 
determined from weighted variances.

band. In using these techniques for calculating individual line strengths, 
the assumption is that rotational and vibrational energies of the C02 mole
cule do not interact. Comparisons with the small amount of experimental data 
available from tunable lasers (Aronson et al. 1974) indicate that line 
strengths calculated in this way may be in error by 5 or 10% at temperatures 
and pressures encountered near and above the tropopause.

The error calculated radiance for an uncertainty of 5 to 10% in the assumed 
line strength is shown in table 4 for the most sensitive spectral channel of 
ViPR--in which the transmittance profile peaks at or above the tropopause.
This error is clearly outside the limits of eq (7).

The best hope for reducing errors in calculated radiances attributable to 
uncertainties in S(T) is to determine k(v) and S(T) directly for each spectral 
line. It will be possible to do this with tunable lasers now available for 
scanning the "Q" branch and those being developed for scanning the rest of the 
spectral region for the CO^ band.

RESULTS AND CONCLUSIONS

In this paper we have described the sensitivity of calculated transmittances 
and radiances to variation in spectral line shape and line strength or absorb
er concentration determined for the 6 CO2 channels of VTPR. The changes in
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radiances that result as these quantities are varied are shown in figures 2 
to 5 for the temperature profiles of figure 1.

As stated earlier, the error in calculated radiance (from the first guess 
temperature profile) can be no greater than the allowed error AE for observed 
radiances for any spectral channel of VTPR. [See eq (7).] Table 2 shows the 
amounts by which the line shape parameters y or X and the line strength S(T) 
or the absorber concentration CCq2 can be uncertain, and still limit the 
errors in calculated radiances to less than AE for all spectral channels. The 
limits for both profiles are the systematic errors in these quantities for all 
spectral lines and the entire temperature sounding. Uncertainties in y, X, 
and S(T) for a single spectral line or for the uncertainty in CC02 at differ
ent pressure levels within a temperature sounding can probably be greater than 
the values of table 2.
The acceptable limits of error for y, X, and S(T) given in table 2 are much 

less than the uncertainty in our present knowledge of these quantities (as 
summarized in table 3). The uncertainty in Cqq^ is not as serious as that for 
the other quantities, but still gives errors in calculated radiance that are 
equal to the permissible noise level of VTPR for some spectral channels and 
for some temperature profiles.
The uncertainties in y, X, and S(T) appear to be too great to permit retriev

al of temperature profiles from measured radiances and first guess radiances 
computed from calculated transmittances alone. Laboratory studies must be 
continued to obtain more accurate values for y, X, and S(T) for use in the 
line-by-line computer programs for calculating atmospheric transmission. Such 
values would lessen the need for making empirical adjustments to the radiance 
data to retrieve the temperature profile.

The means of obtaining the required information on these quantities is 
through detailed high-resolution spectroscopic measurements of the transmis
sion of C02 in the 15-ym region at different pressures and temperatures. Such 
work is under way at the Satellite Experiment Laboratory (SEL) of the National 
Environmental Satellite Service (NESS). It will be carried out with the SEL 
high-resolution spectrometer and with tunable lasers as they become available.
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